Formation of trans-M(O)₂(CO)₄ (M = Mo and W): Intermediates in the Photooxidation of Matrix-Isolated M(CO)6

JOSEPH A. CRAYSTON,^{1a} MATTHEW J. ALMOND,^{1b} ANTHONY J. DOWNS,^{1b} MARTYN POLIAKOFF,*^{1a} **and JAMES J. TURNERla**

Received **January** *6,* **1984**

Photolysis of Mo(CO)₆ or W(CO)₆, isolated in O₂-doped Ar or CH₄ matrices at 10 K, produces IR and Raman spectroscopic evidence for **formation of two oxo carbonyl species, A and B. The observed isotopic shifts in IR and Raman bands (natural-abundance Mo isotopes, and "CO and '*O2 substitution) are used to show that B is a trans-dioxo metal tetracarbonyl** species, M(O)₂(CO)₄, with a linear O=M=O group. The mechanism of photooxidation is briefly discussed.

There is considerable mechanistic interest in the oxidation of transition-metal species by dioxygen. One approach is to study the addition of O_2 to coordinatively unsaturated transition-metal centers. Matrix isolation has played a significant role in these experiments because it is particularly easy to generate the unsaturated metal centers in matrices.2 Thus, cocondensation of metal atoms with O_2 has produced evidence for all of the more probable types of MO_x complexes:

$$
M + O_2 \xrightarrow{\text{cicondense}} MO_3
$$

Examples include 1^{3a} , 2^{3b} , 3^{3c} and 4^{3d}

An alternative approach is the UV photolysis of transition-metal carbonyls in the presence of oxygen. This method has been **used** to generate peroxo complexes that were detected by ESR.4

Recently we described^{5,6} how photolysis of matrix-isolated Cr(C0)6 in the presence of **O2** produced, inter alia, "chromyl carbonyl", $Cr(O)₂(CO)₂$ (5). The IR spectra not only showed

clearly that the *0-0* bond had been cleaved but also provided

- **(1) (a) University of Nottingham. (b) University of Oxford.**
- (2) Downs, A. J.; Hawkins, M. Adv. Infrared Raman Spectrosc. 1983, 10,
1-109. Moskovits, M., Ozin, G. A., Eds. "Cryochemistry"; Wiley-In-
terscience: New York, 1976. Turner, J. J.; Poliakoff, M. ACS Symp. *Ser.* **1983,** *No. 211,* **35.**
- (3) (a) Ozin, G. A. Acc. Chem. Res. 1977, 10, 21. McIntosh, D.; Ozin, G. A. Inorg. Chem. 1977, 16, 59. (b) Darling, J. H.; Garton-Sprenger, M. B.; Ogden, J. S. Symp. Faraday Soc. 1974, 8, 75. (c) Hewett, W. D., Jr.; Newton Huber, H.; Klotzbücher, W.; Ozin, G. A.; Van Voet, A. Can. J. Chem. **1913,51, 2722.**
- **(4) Lindsell, W. E.; Preston, P. N.** *J. Chem. Soc., Dolton Trans.* **1979,1105. Carlton, L.; Lindsell, W. E.; Preston, P. N.** *J. Chem. Soc., Dolton Trans.* **1982, 1483.**
- **(5) Poliakoff, M.; Smith, K. P.; Turner, J. J.; Wilkinson, A. J.** *J. Chem. Soc., Dolton Trans.* **1982, 65 1.**
- **(6) Hawkins, M. D.Phi1. Thesis, University of Oxford, 1981.**

Introduction estimates of the OC-Cr-CO and O=Cr-O bond angles **(5).** The molecule was interesting because it was the first example of a Cr(1V) carbonyl compound, yet it appeared to be one of the more stable products formed during the photooxidation of $Cr(CO)₆$. Although several other products were detected, they proved to be more difficult to characterize and the proposed oxidation mechanism' was necessarily somewhat tentative.

Those experiments^{5,6} with $Cr(CO)₆$ prompted us to study the photooxidation of matrix-isolated $Mo(CO)_6$ and $W(CO)_6$. The behavior of Mo and W was anticipated to be different from that of Cr, since Mo and W dioxo compounds are generally more stable than the corresponding Cr complexes (e.g. $[Mo(O)₂(CN)₄]⁴⁻$ and $[W(O)₂(CN)₄]⁴⁻$ are stable at room temperature).⁷ These systems are also of interest because oxidized Mo and W carbonyl species are proposed intermediates in the formation of olefin metathesis catalysts.⁸ A more practical consideration is that Mo has seven relatively abundant isotopes,⁹ which have played an important role in the IR characterization of other matrix-isolated Mo/oxide species.^{3c,10}

Our experiments have been most successful and have provided spectroscopic evidence for a number of oxidized Mo and **W** species significantly different from those observed in the analogous reactions of $Cr(CO)₆$. In this paper we describe the characterization of the previously unknown complexes **trans-dioxotetracarbonylmolybdenum** and -tungsten *(6).* We

6

show that the extensive IR and Raman data provide a considerable amount of structural information about these complexes. Finally, we discuss briefly how these species may be formed from the parent hexacarbonyl and discuss possible reasons for their apparent stability. A fuller discussion of the complete photooxidation processes of $Cr(CO)_6$, Mo(CO)₆, and $W(CO)_{6}$ will be presented elsewhere.¹¹

- (7) Lippard, S. J.; Russ, B. J. *Inorg. Chem.* 1967, 6, 1943. Day, V. W.; Hoard, J. L. *J. Am. Chem. Soc.* 1968, 90, 3374. (8) Davie, E. S.; Whan, D. A.; Kemball, C. *J. Catal.* 1972, 24, 272.
-
- (9) The relative abundances of the seven most commonly occurring isotopes
of molybdenum are as follows: ${}^{38}M_0$, $14.8\%, {}^{94}M_0$, $9.3\%, {}^{95}M_0$, $16.7\%, {}^{97}M_0$, $9.6\%, {}^{98}M_0$, $24.1\%, {}^{100}M_0$, $9\%, {}^{97}M_0$. W
- **64th** *ed.;* **CRC Press: Boca Raton, FL, 1983. (IO) Levason, W.; Narayanaswamy, R.; Ogden, J. S.; Rest, A. J.; Turff, J. W.** *J. Chem. SOC., Dalton Trans.* **1982, 2009.**
- **(11) Almond, M. J.; Crayston, J. A.; Downs, A. J.; Poliakoff, M.; Turner, J. J., to be submitted for publication.**

Figure 1. IR absorption and Raman spectra of the CO-stretching region illustrating UV photolysis of $Mo(CO)_{6}$ in a CH₄ matrix doped with O_2 (dilution $Mo(CO)_{6}$: O_2 :CH₄ \approx 1:200:2000) at 20 K: (a) IR spectrum after spray-on; (b) IR **spectrum** showing appearance of bands due to A and B after 4-min unfiltered **UV** photolysis of Mo(CO)6 followed by 30-min irradiation with $\lambda = 403$ nm (note that the CO) absorption band contour broadens after photolysis); (c) Raman spectrum showing a single band due to B. Bands marked with asterisks are due to residual hexacarbonyl. This spectrum was obtained after photolysis steps similar to those preceding spectrum b (i.e., successive 30 min duration photolyses at 312, 435, and 363 nm).

Experimental Section

The IR experiments with $Mo(CO)_{6}$ were performed at Nottingham. The IR experiments with $W(CO)_{6}$ and all of the Raman experiments were performed at Oxford. **Both** laboratories use Air Products Displex CS202 closed-cycle refrigerators, which have been described previously,^{6,12} and matrices were produced by pulsed deposition.

Nottingbarn. All IR spectra were run on a Nicolet 7199 FTIR interferometer with 32K **data** collection (0.5-cm-' resolution, 0.1-cm-l accuracy) and three degrees of zero-filling in the Fourier transform. A Philips HPK-125 W medium-pressure Hg **arc** was used for **UV** photolysis, with a Pyrex filter $(\lambda > 320 \text{ nm})$ or Balzer's interference filters (band-pass *ca.* 20 nm) when appropriate. Matrix gases (Messer Griesheim, purity $\geq 99.998\%$), ¹³CO and ¹⁸O₂ (BOC Prochem), and $Mo(CO)_{6}$ (BDH) were used without further purification. Force constant calculations were carried out on an Apple 2 computer.¹³

Oxford. IR spectra were recorded on a Perkin-Elmer Model 580A spectrophotometer (0.5-cm⁻¹ resolution and accuracy). Raman spectra were excited at 5145 **A** by means of a Spectra-Physics Model 165 Ar+ laser and recorded on a Spex Ramalog *5* spectrometer (typically 5-6-cm-' resolution and accuracy). The optical arrangements used for measuring Raman spectra of matrices have been described previously.^{6,14} The Hg arc and optical filters were the same as those used at Nottingham, although the focusing optics were somewhat different. Matrix gases (BOC grade X), $^{18}O_2$ and ^{13}CO (BOC Prochem), $Mo(CO)_{6}$ (Ralph N. Emmanuel), and $W(CO)_{6}$ (Koch Light) were used without further purification.

Results

UV photolysis of $Mo(CO)_{6}$ or $W(CO)_{6}$ in CH₄ or Ar matrices doped with O_2 initially produces $M(CO)$ ₅ and CO. Further photolysis with an unfiltered Hg arc produces two mixed-carbonyl-oxygen species, **A** and **B,** and increasing quantities of *CO* and *CO,.* Prolonged photolysis yields **as** final products **MO,** and **M03,** the IR spectra of which are already known.^{3c,15} The various stages of the oxidation can be at least

(15) Green, D. W.; Ervin, K. M. *J.* **Mol.** *Spectrosc.* **1981,** *89,* **145.**

Table I. Wavenumbers^a (cm⁻¹) of C-O-Stretching Bands Observed after UV Photolysis of a Matrix Containing M(CO), $(M = Mo, W)$ and $O₂$

	Mo			w
R^b	IR ^b	assignt	Rþ	IR ^c
2120	d	$M(CO)_{6} a_{1g}$	2122	d
2020	d	$M(CO)_{6}e_{g}$	2013	d
d	1988	$M(CO)_{6}$ t _{1 u}	d	1986
e	1968	$M(CO)$, e	e	1970
e	1927	$M(CO)_{5} a_1$	e	1931
2070	2064	А	2060	2054
2012	2015	A	2010	2008
2175	d	в	2160	d
d	2110	B	d	2096

 a For error limits, refer to Experimental Section. b Conditions: CH₄/O₂ matrix; dilution M(CO)₆:O₂:CH₄ \approx 1:200:2000. ^C Conditions: Ar/O₂ matrix; dilution $W(\tilde{CO})_6$:O₂:Ar $\approx 1:100:2000$. Inactive or not observed. **e** Raman bands of M(CO), were not observed because of its extreme photosensitivity to the visible radiation used to excite the scattering $(\lambda = 514 \text{ nm})$.

partially separated by using different filters to limit the wavelengths of the photolyzing radiation. Thus, for $Mo(CO)₆$

in **CH4/02** matrices, an approximate reaction sequence16 is IJV **A B** - MOO, **(i) ^x**> *j20* nm **(ii) anneal**

We shall now present vibrational spectra which show that **B** is *trans*- $Mo(O)₂(CO)₄(6)$.

Product B: ν_{C-O} **Region.** Figure 1a shows the C-Ostretching region of the IR spectrum of $Mo(CO)_{6}$ after deposition in a CH_4 (+10% O_2) matrix. Figure 1b shows the IR spectrum of the *same* matrix after photolysis, at the stage when the yield **of** B is at a maximum. It can be seen that **A** has *two* IR absorptions, marked **A,** in this region, while **B** has only one band, marked **B.** Figure IC shows the Raman spectrum measured in a similar but separate experiment, showing the Raman band assigned to **B.** This Raman band shows the same growth and decay behavior as the IR band due to B during the various stages of the photooxidation. It is clear from these spectra that (i) both **A** and **B** must be due to oxidized species since their IR absorptions are at higher frequency⁵ than those of $Mo(CO)₆$, (ii) **B** must contain at least *two* CO groups since it has noncoincident IR and Raman bands, (iii) **B** *could* be centrosymmetric because of this noncoincidence, and (iv) the spectra are consistent with linear

The frequencies of bands observed in the v_{C-0} region are summarized in Table I.

We can determine the number **of CO** groups in product **B** by photolysis of Mo(CO)₆ partially enriched with ¹³CO. Isotopic enrichment is the most widely used technique for characterizing matrix-isolated metal carbonyls,¹⁸ e.g. Cr- $(O)_2$ ⁵ It is now becoming clear that the technique works

(18) Burdett, J. K.; Poliakoff, M.; Turner, J. J.; Dubost, H. *Adu. Infrared Raman Spectrosc.* **1976,** *2,* **1-52.**

⁽¹²⁾ Church, S. P. Ph.D. Thesis, University of Nottingham, 1982.

^{(13) (}a) Perutz, R. **N.; Turner,** J. **J.** *Inorg. Chem.* **1975,14,262. (b) Perutz, R. N. Ph.D. Thesis, University of Cambridge, 1974.**

⁽¹⁴⁾ Burdett, J. K.; Downs, A. J.; Gaskill, G. P.; Graham, M. A.; Turner, J. J.; Turner, R. F. *Inorg. Chem.* **1978,** *17,* **523.**

⁽¹⁶⁾ This scheme is by no means comprehensive. CO_2 is also produced as is at least one additional metal carbonyl species with a ν_{C-O} IR band **at 1998 cm-' (for W).**

^(1 7) A M(CO), species has *two* **Raman-active C-0 stretching vibrations, a** a_1 and b_1 . Thus, we must postulate that the b_{1g} band was not observed, a not unreasonable assumption in view of the rather weak Raman **scattering of B.**

Figure 2. (a) IR absorption spectrum of approximately *55%* "COenriched **B** in a CH4 matrix doped with **02.** (b) Spectrum predicted (Lorentzian bands, fwhm = 4 cm^{-1}) for a planar M(CO)_4 moiety of *D4h* symmetry. The broad band **due** to photoejected I3CO at *2095 cm-'* (dotted line) obscures **part** of the spectrum. **Thus,** only the region between the two arrows is shown in subsequent spectra (Figure 3).

Figure 3. Stacked plot showing the differences between the IR absorption spectra predicted for D_{4h} (9) and D_{3h} (8) structures of $Mo(O)_2(CO)_4$, upon 33%, 55%, and 65% ¹³CO enrichment: (a) predicted spectra for the D_{3h} $M(CO)_3$ moiety with optimized force constants; (b) observed spectra after photooxidation of ¹³CO-enriched $Mo(CO)_{6}$; (c) predicted spectra for $D_{4h}MOCO)_{4}$ with force constants as in Table **11.**

extremely well for relatively symmetrical molecules but can produce ambiguous results for molecules with low symmetry.¹⁹ We will show that product **B** has high symmetry *so* that these limitations do not apply here.

Figure 2a shows the IR spectrum obtained by photooxidation of Mo(CO)₆ containing 55% ¹³CO.²⁰ There are at least four bands assignable to B, which immediately shows that **B** must contain more than *two* CO groups, since **a** dicarbonyl species would give rise to only three bands with intensities approximately in the ratio 1:2:1 (cf. $Cr(O)₂(CO)₂$).⁵ The observed spectrum is similar to that predicted for a *D4h* M- **(CO),** moiety2' (9 see Figure 2b). Unfortunately part of the

Table **II.** Observed and Calculated Wavenumbers (cm-') for the Carbonyl Stretching Modes of Different $Mo(O)_2(^{12}CO)_x(^{13}CO)_{4-x}$ Species in a CH_4/O_2 , Matrix at 20 K^g

obsd ^a	$calcd$ ^f	mode	molecule
2175.0^{b}	2174.9	a_{1g}	$Mo(^{12}CO)_{4} (D_{4}h)$
е	2127.4	b_{2g}	
2110.0	2109.6	e_u	
d	2167.8	a_1	$Mo(^{12}CO)_{3}(^{13}CO) (C_{2U})$
2123.0	2122.7	a_{1}	
2110.0	2109.6	b,	
2073.4	2073.9	a_{1}	
d	2158.6	a_{1}	cis-Mo(¹² CO) ₂ (¹³ CO) ₂ (C _{2<i>v</i>})
2119.0	2120.1	b_{1}	
2077.6	2078.2	a,	
2069.9	2069.7	$b_{\rm a}$	
е	2160.8	$a_{\mathbf{z}}$	trans-Mo(¹² CO) ₂ (¹³ CO) ₂ (D _{2h})
2110.0	2109.6	b_{2u}	
е	2093.6	$a_{\bf{z}}$	
2063.4	2062.6	b_{1u}	
с	2148.4	a_{1}	$Mo(^{12}CO)(^{13}CO)_{3}$ $(C_{2}v)$
c	2096.6	a_{1}	
2071.3	2071.5	a,	
2063.4	2062.6	b_{2}	
e	2126.4	a_{12}	$Mo(^{13}CO)_{4} (D_{4}h)$
e	2080.0	b_{2g}	
2063.4	2062.6	$\mathbf{e}_{\mathbf{u}}$	

^a IR frequencies; for error estimates refer to Experimental Section. **b** Raman band. ^c Not observed, predicted to be overlapped or obscured by bands of $Mo(CO)_6$ or uncoordinated ^{12}CO and ¹³CO. ^d Not observed, predicted to be weak. ^e IR-inactive band. Each frequency was entered only once into the least-squares re-finement. **g** Nine frequencies, root-mean-square error 0.39 cm" , maximum error 1.1 cm⁻¹. Force constants $(N \text{ m}^{-1})$: k_{CO} = 1833.74, *kcis=* 20.66, **ktrans=** 35.85.

observed spectrum is obscured by the broad absorption of the uncoordinated ${}^{13}CO$ produced during photolysis. This ${}^{13}CO$ absorption could be masking additional bands due to **B.** Thus, it is difficult to use this *single* spectrum to eliminate the possibility that B contains an $M(CO)$ ₃ moiety (8). This possibility can be eliminated, however, by comparing the spectra obtained by photooxidation of samples of $Mo(CO)₆$ with 33%, 55%, and 65% ¹³CO enrichment. These are illustrated in Figure 3, which, it should be noted, covers only part of the spectral region included in Figure 2. For all three experiments, the spectra predicted for a D_{3h} M(CO)₃ fragment (Figure 3a) are quite different from the observed spectra (Figure 3b). On the other hand, there is a striking agreement between the observed spectra and those predicted for a *D4h* $M(CO)₄$ moiety (Figure 3c). Table II summarizes the observed and calculated frequencies for $Mo(^{12}CO)_{4-x}(^{13}C)_{x}$ species. A similar spectrum is observed upon ¹³CO enrichment of the tungsten analogue, although some of the bands are overlapped by bands due to A and uncoordinated 13C0.

Thus, the ¹³CO enrichment experiments confirm that B contains a planar or near-planar²¹ Mo(CO)₄ moiety (9). We now present vibrational spectra in the region 700-900 cm⁻¹ which indicate that B also contains a linear $O = M = O$ group **(10).**

 $O = Mo = O$

10

Product B: ν_{M-0} Region. Figure 4a shows that the IR spectrum of $Mo(CO)₆$ isolated in a CH₄ (+10% O₂) matrix has no absorptions in the region $740-840$ cm⁻¹. During photooxidation, a broad IR absorption centered at 757 cm-' (Figure 4b) grows in and decays at the same rate as the carbonyl absorption of **B.** Thus, the two IR bands must be due to the same compound. Similarly, a broad feature at 820 cm⁻¹ in the Raman spectrum (Figure 4c) can be assigned to

⁽¹⁹⁾ Church, S. P.; Poliakoff, M.; Timney, J. A.; Turner, J. J. *Inorg. Chem.* **1983, 22, 3259.**

⁽²⁰⁾ $Mo(CO)_{6}$ was enriched by UV photolysis in the gas phase in the presence of ¹²CO/¹³CO mixtures at a total pressure of ca. 5 torr. For **details scc: Perutz, R. N.; Turner, J. J.** *Ikrg. Chem.* **1975,** *14,* **262.**

⁽²¹⁾ The predicted frequencies and relative intensities of the bands in this region are identical for D_{4h} **and** C_{4v} **M(CO)₄ moieties, since the G matrices are diagonal and carry no bond angle information. A** *C₄***, species should, however, have an IR-active a₁ vibration, although for a near-planar structure the band will be weak.**

Figure 4. The 740-840-cm⁻¹ regions of the IR absorption and Raman spectra during photooxidation of Mo(CO)₆ in a CH₄ matrix containing **10% O2** showing bands due to product B: (a) IR spectrum before photolysis; (b) IR spectrum after W photolysis followed by irradiation with $\lambda = 403$ nm and $\lambda > 320$ nm; (c) corresponding *Raman* spectrum obtained after a photolysis sequence similar to that preceding (b) **(30** min, $\lambda = 312$ nm; 30 min, $\lambda = 435$ nm; 30 min, $\lambda = 363$ nm).

Table III. Wavenumbers^a (cm⁻¹) of Bands Observed in the Region **700-950** cm-' after **UV** Photolysis of a Matrix Containing $M(CO)_{6}$ and Oxygen

Mo		W		
IR ^b	Rb	assignt	IR ^c	$\mathbf{R}^{\bm{b}}$
954	d	А	914	d
d 758	820 d	Ba_{1g} Ba_{2u}	d 751	850 d
945 900	d d	$MoO2 \nu_1 (a_1)^e$ $MoO2 \nu_{3} (b1)e$		
913	d	$MoO3$ ν_3 (e') ^{e,f}	d	

 a For error limits, refer to Experimental Section. b Conditions: CH₄/O₂ matrix; dilution M(CO)₆:O₂:CH₄ \approx 1:200:2000. ^c Con-CH₄/O₂ matrix; dilution M(CO)₆:O₂:CH₄ ≈ 1:200:2000. ^{*c*} Colditions: Ar/O₂ matrix; dilution W(CO)₆:O₂:Ar ~ 1:100:2000.
^d Not observed or inactive. ^{*e*} Reference 3c. *f* Reference 15.

B (see Table 111). Both the IR and Raman bands shift when the experiment is repeated with $^{18}O_2$, indicating that B indeed contains oxygen. Although the Raman spectrum was necessarily recorded under adverse conditions (i.e., low laser power to avoid photolysis of the sample, and hence wide monochromator slits), it is clear that the IR and Raman bands of **B** are not coincident, again supporting the possibility of a centrosymmetric structure.

The IR absorption of **B** appears broad in Figure **4,** but it actually consists **of** seven relatively sharp bands (Figure 5b, Table IV). These bands have the correct relative intensities for the naturally occurring isotopes⁹ of Mo. The presence of this isotopic splitting means that the absorption is due to an M_0 vibration and thus the $O=O$ bond of the O_2 must have been broken during the photooxidation. The separation, **7.3** cm⁻¹, between the bands assigned to ⁹²Mo and ¹⁰⁰Mo is much larger than that predicted for a single Mo=O group, 4.5 cm⁻¹ (Figure 5a), but approaches that of a linear **O==Mo=O** moiety, 8.0 cm-I (Figure *5c).* We can prove that **B** contains only *two* oxygen atoms by photooxidation of Mo(CO), in a matrix containing a mixture of unscrambled ${}^{16}O_2$ and ${}^{18}O_2$ (i.e., no **160'80)** (Figure *6).* There are only two absorptions (both split by Mo isotopes) due to Mo¹⁶O₂ and Mo¹⁸O₂. A molecule containing three or more oxygen atoms would necessarily give rise to additional bands due to mixed **l60/l8O** species. The

Figure 5. Observed and calculated **Mo** isotope structure in the IR absorption spectra of monooxo and dioxo species isolated in an 0,-doped **CHI** matrix at **20** K: (a) calculated isotope frequency pattern for a monooxo species assuming the **Mo=O** group to be a simple harmonic oscillator; (b) **observed** molybdenum isotope structure for the **757-em-l** band of **B** (e) isotope pattern for a linear dioxo **species** calculated by using eq 2 with $\theta_1/2 = 90^\circ$. The calculated spectra are depicted as stick plots with heights given by the relative natural abundances of the molybdenum isotopes.⁹

Figure 6. The 780-720-cm⁻¹ region of the IR absorption spectrum obtained after photooxidation **of** a **CH4** matrix containing **Mo(CO)~** and doped with both ¹⁶O₂ and ¹⁸O₂. The two bands are assigned to $v_{\text{as}}(^{16}O=Mo=^{16}O)$ and $v_{\text{as}}(^{18}O=Mo=^{18}O)$. Both clearly exhibit molybdenum isotope structure.

Table **IV.** Wavenumbers (cm⁻¹) of the Antisymmetric OMO Stretching Vibration of Different Isotopomers of $trans-Mo(O)₂(CO)₄$ in CH₄ + 10% O₂ Matrices at 20 K

	$M^{16}O_{2}$	$M^{18}O_2$	$\Delta \nu^a$	
92M ₀	763.6	731.2	32.4	
⁹⁴ Mo	761.7	729.2	32.5	
$\rm{^{95}Mo}$	760.6	728.1	32.5	
96M _O	759.7	727.3	32.4	
97M _O	758.9	726.4	32.5	
98M ₀	757.9	725.3	32.6	
100M _O	756.3	723.6	32.7	
$_{\Delta \nu} b$	7.3	7.6		

^a Wavenumber difference, $\nu(^{16}O_2) - \nu(^{18}O_2)$. ^b Maximum isotopic shift, $\nu(^{92}\text{Mo}) - \nu(^{100}\text{Mo})$.

absence of any bands assignable to **'60M0180** in Figure *6* has considerable implications for the mechanism of the photooxidation, as noted below.

Table V. Comparison of the Observed and Calculated Shifts (cm-') on *"0* **Substitution for the Linear O=M=O Antisymmetric and Symmetric Modes for the Isoelectronic**

Molecules $\text{Mo}(O)_{2}(\text{CO})_{4}$, $\text{W}(O)_{2}(\text{CO})_{4}$, and $[\text{Re}(O)_{2}(\text{CN})_{4}]$ ³⁻					
			$Mo(O)2(CO)4a$ $W(O)2(CO)4a$ $[Re(O)2(CN)4]$ ^{3-b}		
		Antisymmetric (IR)			
$^{16}O_2$	757.9	751.0	775.0		
$^{18}O_2$	725.3	714.0	737.0		
$\Delta\nu_{\rm obsd}$ – $\Delta \nu_{\rm{calcd}}^c$	0.2	0.5	-0.3		
		Symmetric (Raman)			
	820	850	879		
$^{16}O_2$ $^{18}O_2$	775	805 ^d	832		
$\Delta v_{\rm obsd}$ – $\Delta \nu_{\rm{calcd}}^e$	$^{-2}$	-4	-3		

^{*a*} This work; Mo frequencies given for ⁹⁸Mo. ^{*b*} Reference 24. ^{*c*} $\Delta \nu_{\rm calcd}$ for the antisymmetric stretching fundamental is ob**tained from eq 1 with** $\theta_{\bf u}/2 = 90^{\circ}$ **. Thus** $R_1 = [m({}^{16}O)[m(M) +$ $2(m(^{18}O))] / [m(^{18}O)[m(M) + 2(m(^{16}O))]$. ^{*d*} Reference 6. *e* For **a linear O=M=O unit, the shift of the symmetric stretch on** ¹⁸O₂ substitution is obtained from the expression $\nu(^{16}O)/\nu(^{18}O)$ = $[m^{(18)}(m^{16}(0))]^{1/2}$ (Herzberg, G. "Infrared and Raman Spectra **of Polyatomic Molecules"; Van Nostrand: Princeton, NJ, 1945; p 187).**

Thus, B contains four CO groups and *two* 0 atoms, i.e., $Mo(O)₂(CO)₄$. Since the IR absorption at 757 cm⁻¹ shows isotopic splitting by Mo isotopes and since it is not coincident with the Raman band at 820 cm^{-1} , it must be due to an antisymmetric O=Mo=O stretching vibration. Its position is close to that expected for a trans-dioxo species, and this is supported by the IR and Raman frequencies of $W(O)_2$ (CO), which lie close to those of the isoelectronic and *stable* d^2 anion²² $[Re(O)₂(CN)₄]$ ³⁻ (Table V). These analogies can be confirmed by a more quantitative analysis of the IR spectra of $Mo(O)_{2}(CO)_{4}.$

The isotopic shift in the frequency of bands in the M-0 stretching region (Table IV), unlike those in the C-O stretching region, can be used to estimate bond angles. For the *harmonic* triatomic oscillator $O = M = O$, isotopic frequencies can be used to calculate an accurate value of the bond angle, but since the observed frequencies are necessarily anharmonic, the frequency shifts between different isotopomers give different calculated values of the bond angle.^{23,24} Thus, the frequencies $v(^{16}O_2)$ and $v(^{18}O_2)$ for the isotopic substitution Fracture the observed Hequencies
the frequency shifts between dist
to calculated values of the bond
its $\nu(^{16}O_2)$ and $\nu(^{18}O_2)$ for the is
 ν^{16}
 ν^{16}

give an upper limit θ_u for the bond angle (eq 1), where $m(X)$

$$
\sin \frac{\theta_{\rm u}}{2} = \left[\frac{m(M)[m({}^{16}{\rm O}) - (m({}^{18}{\rm O}))R_1]}{2(m({}^{16}{\rm O}))(m({}^{18}{\rm O}))(R_1 - 1)} \right]^{1/2} \quad (1)
$$

mass of the appropriate atom and R_1
mass of the appropriate atom and R_1
 $\begin{bmatrix} x_M \\ y_M \end{bmatrix}^N$ the isotopic substitution
 $\begin{bmatrix} x_M \\ y_M \end{bmatrix}$ o $\begin{bmatrix} y_M \\ 0 \end{bmatrix}$ is the atomic mass of the appropriate atom and R_1 = $[\nu(^{18}O_2)/\nu(^{16}O_2)]^2$. Similarly, the isotopic substitution

$$
\begin{array}{ccc} & \text{if } & \text
$$

gives a lower limit, θ_1 (eq 2), where $R_2 = \left[\nu(\nu M)/\nu(\nu M)\right]^2$.

$$
\sin \frac{\theta_1}{2} = \left[\frac{(m(^xM))(m(^yM))(1 - R_2)}{2(m(O))[R_2(m(^yM)) - m(^xM)]} \right]^{1/2} (2)
$$

- **(22) Howard-Lock, H. E.; Lock, C. J. L.; Turner, G.** *SpecFochim. Acta, Part A* **1982,** *38A.* **1283.**
- **(23) Allavena, M.; Rysnik, R.; White, D.; Calder, V.; Mann, D. E.** *J. Chem. Phys.* **1969,** *50,* **3399. Maillard, D.; Allavena, M.; Perchard, J. P.** *Spectrochim. Acta, Part A* **1975,** *31A,* **1523.**
- **(24) For a recent example of the use of these formulas see: Green, D. W.; McDermott, D. P.; Bergman, A.** *J. Mol. Spectrosc.* **1983,** *98,* 111.

Unfortunately, the calculated values of *6* become increasingly sensitive to the precise value of the isotopic shift as the O= M=O molecule approaches linearity.¹⁸

These equations apply rigorously only to *isolated* $MO₂$ species but appear also to give realistic bond angles for more complicated molecules (e.g., $Mo(O)_2Br_2,^{10} Cr(O)_2(CO)_2,^{5}$ etc.).

Applying eq 1 and **2** to the frequencies of the bands in Figure 6, we obtain values²⁵ for $Mo(O)₂(CO)₄$:

$$
\theta_1 = 145^{+80}_{-7} \qquad \theta_u = 168^{+50}_{-3}
$$

These values are consistent with our interpretation that B contains a linear $O = M = O$ moiety, particularly if we consider that an isotopic shift only **0.2** cm-I larger than the observed value gives $\theta_u = 180^\circ$ (Table V). If this linear O=Mo=O group **(10)** is combined with the planar Mo(CO), unit *(9)* already deduced from the 13CO-enrichment experiments, we have the trans-dioxo octahedral structure *(6)* for product B.

Structure of A. At present it is not possible to assign an unambiguous structure to **A.** It must contain at least two CO groups as it has two v_{C-Q} IR absorptions. After photooxidation of ¹³CO-enriched Mo(CO)₆, part of the spectrum due to A is unfortunately obscured by residual absorptions of unoxidized $Mo(CO)₆$. Nevertheless, it is clear from these spectra that A contains three or more CO groups.²⁶ A probably contains an O_2 unit as it has an IR band at 954 cm⁻¹. Unfortunately, the IR band of the Mo compound at 954 cm^{-1} has no apparent Mo isotopic splitting, so we cannot easily distinguish between dioxo and peroxo groups. The most plausible structures for A are the $Mo(O)_{2}(CO)_{3}(11)$ and $MoO_{2}(CO)_{4}(12)$ species,

11 **12**

but experiments aimed at a more definite identification are still under way.¹¹ IR bands similar to those of A are also observed⁶ in the photooxidation of matrix-isolated $Cr(CO)₆$, presumably due to an intermediate in the formation of Cr- $(O)_{2}(CO)_{2}$. Thus, the tricarbonyl structure (11) for A is attractive on mechanistic grounds as it could be a common precursor to both $Cr(O)₂(CO)₂$ and $Mo(O)₂(CO)₄$: *7*
7 T 7 <i>7 Z Z M(O)₂ and Moto
7 M(O)₂ (CC</sup>

Discussion

Unlike $Cr(O)₂(CO)₂$, the major photooxidation product of matrix-isolated Cr(CO)₆, both $Mo(O)₂(CO)₄$ and $W(O)₂(C-$ *O),* are coordinatively saturated 18-electron compounds, which could conceivably be stable near room temperature. The metals are presumably in a $+IV$ oxidation state with a d^2 electronic configuration. Simple molecular orbital arguments predict that the trans isomer of $d^2 M(O)_2(CO)_4$ should be more stable than the cis isomer. The HOMO of the trans isomer (13) is stabilized by π interaction with four CO groups while the HOMO of the cis isomer (14) is stabilized by π interaction

⁽²⁵⁾ The standard errors of the bond angles were estimated by calculating bond angles for all possible isotopic shifts.

⁽²⁶⁾ It may be possible to avoid this problem of overlapping bands by carrying out the photooxidation experiments with a precursor like W-
(CO)₃-py as an alternative to W(CO)₆. The ν_{C_0} bands of W(CO)₃-py (i.e. **Oskam, A.; McHugh, T. M.; Rest, A. J.** *Inorg. Chim. Acta* **1980,** *44,* **L1.**

with only three CO groups and is *destabilized* by π interaction with the O atom. However, the relative stability of the trans isomer in our photooxidation experiments should not be taken as conclusive evidence for thermodynamic stability. It could merely be the result of fortuitously poor overlap between the emission of the Hg arc and the absorption bands of the trans isomer.

A detailed discussion of how $M(O)₂(CO)₄$ is formed from matrix-isolated $M(CO)_6$ must clearly await positive identification of the various intermediates, particularly A. Nevertheless, some conclusions can already be drawn about the mechanism. In the experiment where M(CO)₆ was photo-
oxidized by a mixture of ¹⁶O₂ and ¹⁸O₂, *no* bands due to M160180(CO)4 were **observed (see** Figure 6). This means that both O atoms in the $M(O)₂(CO)₄$ molecule must originate from the same O_2 molecule. However, the experiments also show that $CO₂$ is produced before significant quantities of $M(O)₂(CO)₄$ are observed. These two observations can be rationalized by assuming either (a) that formation of M- $(O)_2 (CO)_4$ requires *two* molecules of O_2 , with some carbon-
yl-containing intermediate X
 $M(CO)_6 + O_2 \rightarrow X + 2CO_2$ yl-containing intermediate X

$$
M(CO)6 + O2 \rightarrow X + 2CO2
$$

$$
X + O2 \rightarrow M(O)2(CO)4
$$

or (b) that formation of CO_2 and $M(O)_2(CO)_4$ are alternative
pathways
 $X + 2CO_2$
 $M(CO)_6 + O_2$ pathways

$$
M(CO)_{6} + O_{2}
$$
\n
$$
M(O)_{2}(CO)_{4} + 2CO
$$
\n
$$
M(O)_{2}(CO)_{4} + 2CO
$$

However, the first explanation seems less likely after an experiment in which the ratio of O_2 to CH_4 was reduced from 1:10 to 1:100 and the ratio of photogenerated $CO₂$ to M- $(O)₂(CO)₄$ appeared to be unchanged. Thus, formation of $M(O)₂(CO)₄$ from $M(CO)₆$ probably involves only one molecule of O_2 .

 $M(O)₂(CO)₄$ is destroyed by further UV photolysis, eventually producing metal oxide species, but it is not yet clear whether this loss of CO is caused by excitation of $d \rightarrow d$ or $O \rightarrow M$ charge-transfer transitions.

Conclusions

Our experiments have shown that photooxidation of M- (CO) ₆ proceeds via the formally 18e compound *trans-M-* $(O)₂(CO)₄$. Recent experiments, particularly in liquefied noble gases, have shown that coordinatively saturated compounds, first prepared in matrices at 20 K, are often much more stable than originally supposed. Thus, $Cr(CO)_5N_2$, formed by photolysis of $Cr(\overline{CO})_6$ in the presence of N₂, is stable at -35 °C in liquid xenon solution.²⁷ The possibility that Mo- $\rm ^{\circ}C$ in liquid xenon solution.²⁷ $(O)₂(CO)₄$ and $W(O)₂(CO)₄$ are stable at temperatures substantially higher than 20 K should therefore be given serious consideration.

Acknowledgment. We thank the SERC for supporting this research and for funding studentships for J.A.C. and M.J.A. We are grateful to Dr. M. Hawkins, who carried out some of the first Raman experiments, to Dr. R. N. Perutz for catalyzing the collaboration between Nottingham and Oxford, and to Dr. G. Davidson and Dr. J. K. Burdett for helpful discussions.

Registry No. Mo(CO)₄, 44780-98-5; Mo(¹²CO)₃(¹³CO), 91444- $Mo(O)₂(CO)₄, 91444-04-1; W(O)₂(CO)₄, 91444-05-2; Mo(CO)₆,$ **"CO, 1641-69-6.** $03-0;$ cis-Mo(¹²CO)₂(¹³CO)₂, 91444-00-7; trans-Mo(¹²CO)₂(¹³CO)₂, 91 547-49-8; Mo(¹²CO)(¹³CO)₃, 91 444-01-8; Mo(¹³CO)₄, 91 444-02-9; **13939-06-5; W(CO)6, 14040-1** 1-0; **02, 7782-44-7; 1802, 32767-18-3;**

M(0)2(C0)4 + **2CO (27) Turner, J.** J.; **Simpson, M.** B.; Poliakoff, M.; Maier, W. B., **11;** Graham, M. **A.** *Inorg. Chem.* **1983, 22,** *91* **1.**